Model Based Fusion for Multisensor Target Recognition
نویسندگان
چکیده
A multisensor feature-based fusion approach to target recognition using a framework of model-theory is proposed. The Best Discrimination Basis Algorithm (BDBA) based on the best basis selection technique and the Sensory Data Fusion System (SDFS) based on logical models and theories are applied for feature extraction. The BDBA selects the most discriminant basis. The SDFS rst selects features, which are interpretable in terms of symbolic knowledge about the domain, from the most discriminant basis determined for each sensor separately. Then, it fuses these features into one combined feature vector. The SDFS uses formal languages to describe the domain and the sensing process. Models represent sensor data, operations on data, and relations among the data. Theories represent symbolic knowledge about the domain and about the sensors. Fusion is treated as a goal-driven operation of combining languages, models, and theories related to diierent sensors into one combined language, one combined model of the world and one combined theory. The results of our simulations show that the recognition accuracy of the proposed Automatic Multisensor Feature based Recognition System (AMFRS) is better than the recognition accuracy of a system that performs recognition using Most Discriminant Wavelet Coeecients (MDWC) as features. The AMFRS utilizes a model-theory framework (SDFS) for feature selection, while MDWC are selected from all the most discriminant bases determined for each sensor using a relative entropy measure.
منابع مشابه
Model Theory Based Fusion Framework with Application to Multisensor Target Recognition
In this work, we present a model theory based fusion methodology for multisensor wavelet-features based recognition called Automatic Multisensor Feature-based Recognition System (AMFRS). The goal of this system is to increase accuracy of the commonly used wavelet-based recognition techniques by incorporating symbolic knowledge (symbolic features) about the domain and by utilizing a model theory...
متن کاملA New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT) and extended Kalman filter (EKF). Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter...
متن کاملCategory Theory Approach to Fusion of Wavelet-Based Features
This paper discusses the application of category theory as a unifying concept for formally developed information fusion systems. Category theory is a mathematically sound technique used to capture the commonalties and relationships between objects. This feature makes category theory a very elegant language for describing information fusion systems and the information fusion process itself. Afte...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملSimultaneous detection of lane and pavement boundaries using model-based multisensor fusion
This paper treats a problem arising in the design of intelligent vehicles: automated detection of lane and pavement boundaries using forward-looking optical and radar imaging sensors mounted on an automobile. In previous work, lane and pavement boundaries have always been located separately. This separate detection strategy is problematic in situations when either the optical or the radar image...
متن کامل